293 lines
8.7 KiB
C++
293 lines
8.7 KiB
C++
|
#include <Arduino.h>
|
||
|
#include "ubitx.h"
|
||
|
|
||
|
/**
|
||
|
CW Keyer
|
||
|
CW Key logic change with ron's code (ubitx_keyer.cpp)
|
||
|
Ron's logic has been modified to work with the original uBITX by KD8CEC
|
||
|
|
||
|
Original Comment ----------------------------------------------------------------------------
|
||
|
* The CW keyer handles either a straight key or an iambic / paddle key.
|
||
|
* They all use just one analog input line. This is how it works.
|
||
|
* The analog line has the internal pull-up resistor enabled.
|
||
|
* When a straight key is connected, it shorts the pull-up resistor, analog input is 0 volts
|
||
|
* When a paddle is connected, the dot and the dash are connected to the analog pin through
|
||
|
* a 10K and a 2.2K resistors. These produce a 4v and a 2v input to the analog pins.
|
||
|
* So, the readings are as follows :
|
||
|
* 0v - straight key
|
||
|
* 1-2.5 v - paddle dot
|
||
|
* 2.5 to 4.5 v - paddle dash
|
||
|
* 2.0 to 0.5 v - dot and dash pressed
|
||
|
*
|
||
|
* The keyer is written to transparently handle all these cases
|
||
|
*
|
||
|
* Generating CW
|
||
|
* The CW is cleanly generated by unbalancing the front-end mixer
|
||
|
* and putting the local oscillator directly at the CW transmit frequency.
|
||
|
* The sidetone, generated by the Arduino is injected into the volume control
|
||
|
*/
|
||
|
|
||
|
//CW ADC Range
|
||
|
int cwAdcSTFrom = 0;
|
||
|
int cwAdcSTTo = 50;
|
||
|
int cwAdcBothFrom = 51;
|
||
|
int cwAdcBothTo = 300;
|
||
|
int cwAdcDotFrom = 301;
|
||
|
int cwAdcDotTo = 600;
|
||
|
int cwAdcDashFrom = 601;
|
||
|
int cwAdcDashTo = 800;
|
||
|
//byte cwKeyType = 0; //0: straight, 1 : iambica, 2: iambicb
|
||
|
|
||
|
byte delayBeforeCWStartTime = 50;
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
// in milliseconds, this is the parameter that determines how long the tx will hold between cw key downs
|
||
|
//#define CW_TIMEOUT (600l) //Change to CW Delaytime for value save to eeprom
|
||
|
#define PADDLE_DOT 1
|
||
|
#define PADDLE_DASH 2
|
||
|
#define PADDLE_BOTH 3
|
||
|
#define PADDLE_STRAIGHT 4
|
||
|
|
||
|
//we store the last padde's character
|
||
|
//to alternatively send dots and dashes
|
||
|
//when both are simultaneously pressed
|
||
|
char lastPaddle = 0;
|
||
|
|
||
|
/*
|
||
|
//reads the analog keyer pin and reports the paddle
|
||
|
byte getPaddle(){
|
||
|
int paddle = analogRead(ANALOG_KEYER);
|
||
|
//handle the ptt as the straight key
|
||
|
|
||
|
if (digitalRead(PTT) == 0)
|
||
|
return PADDLE_STRAIGHT;
|
||
|
|
||
|
if (paddle > 800) // above 4v is up
|
||
|
return 0;
|
||
|
|
||
|
if (!Iambic_Key)
|
||
|
return PADDLE_STRAIGHT;
|
||
|
|
||
|
if (paddle > 600) // 4-3v is dot
|
||
|
return PADDLE_DASH;
|
||
|
else if (paddle > 300) //1-2v is dash
|
||
|
return PADDLE_DOT;
|
||
|
else if (paddle > 50)
|
||
|
return PADDLE_BOTH; //both are between 1 and 2v
|
||
|
else
|
||
|
return PADDLE_STRAIGHT; //less than 1v is the straight key
|
||
|
}
|
||
|
*/
|
||
|
/**
|
||
|
* Starts transmitting the carrier with the sidetone
|
||
|
* It assumes that we have called cwTxStart and not called cwTxStop
|
||
|
* each time it is called, the cwTimeOut is pushed further into the future
|
||
|
*/
|
||
|
void cwKeydown(){
|
||
|
|
||
|
keyDown = 1; //tracks the CW_KEY
|
||
|
tone(CW_TONE, (int)sideTone);
|
||
|
digitalWrite(CW_KEY, 1);
|
||
|
|
||
|
//Modified by KD8CEC, for CW Delay Time save to eeprom
|
||
|
//cwTimeout = millis() + CW_TIMEOUT;
|
||
|
cwTimeout = millis() + cwDelayTime * 10;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* Stops the cw carrier transmission along with the sidetone
|
||
|
* Pushes the cwTimeout further into the future
|
||
|
*/
|
||
|
void cwKeyUp(){
|
||
|
keyDown = 0; //tracks the CW_KEY
|
||
|
noTone(CW_TONE);
|
||
|
digitalWrite(CW_KEY, 0);
|
||
|
|
||
|
//Modified by KD8CEC, for CW Delay Time save to eeprom
|
||
|
//cwTimeout = millis() + CW_TIMEOUT;
|
||
|
cwTimeout = millis() + cwDelayTime * 10;
|
||
|
}
|
||
|
|
||
|
//Variables for Ron's new logic
|
||
|
#define DIT_L 0x01 // DIT latch
|
||
|
#define DAH_L 0x02 // DAH latch
|
||
|
#define DIT_PROC 0x04 // DIT is being processed
|
||
|
#define PDLSWAP 0x08 // 0 for normal, 1 for swap
|
||
|
#define IAMBICB 0x10 // 0 for Iambic A, 1 for Iambic B
|
||
|
enum KSTYPE {IDLE, CHK_DIT, CHK_DAH, KEYED_PREP, KEYED, INTER_ELEMENT };
|
||
|
static unsigned long ktimer;
|
||
|
unsigned char keyerState = IDLE;
|
||
|
|
||
|
//Below is a test to reduce the keying error. do not delete lines
|
||
|
//create by KD8CEC for compatible with new CW Logic
|
||
|
char update_PaddleLatch(byte isUpdateKeyState) {
|
||
|
unsigned char tmpKeyerControl = 0;
|
||
|
|
||
|
int paddle = analogRead(ANALOG_KEYER);
|
||
|
//diagnostic, VU2ESE
|
||
|
//itoa(paddle, b, 10);
|
||
|
//printLine2(b);
|
||
|
|
||
|
//use the PTT as the key for tune up, quick QSOs
|
||
|
if (digitalRead(PTT) == 0)
|
||
|
tmpKeyerControl |= DIT_L;
|
||
|
else if (paddle >= cwAdcDashFrom && paddle <= cwAdcDashTo)
|
||
|
tmpKeyerControl |= DAH_L;
|
||
|
else if (paddle >= cwAdcDotFrom && paddle <= cwAdcDotTo)
|
||
|
tmpKeyerControl |= DIT_L;
|
||
|
else if (paddle >= cwAdcBothFrom && paddle <= cwAdcBothTo)
|
||
|
tmpKeyerControl |= (DAH_L | DIT_L) ;
|
||
|
else
|
||
|
{
|
||
|
if (Iambic_Key)
|
||
|
tmpKeyerControl = 0 ;
|
||
|
else if (paddle >= cwAdcSTFrom && paddle <= cwAdcSTTo)
|
||
|
tmpKeyerControl = DIT_L ;
|
||
|
else
|
||
|
tmpKeyerControl = 0 ;
|
||
|
}
|
||
|
|
||
|
if (isUpdateKeyState == 1)
|
||
|
keyerControl |= tmpKeyerControl;
|
||
|
|
||
|
return tmpKeyerControl;
|
||
|
}
|
||
|
|
||
|
/*****************************************************************************
|
||
|
// New logic, by RON
|
||
|
// modified by KD8CEC
|
||
|
******************************************************************************/
|
||
|
void cwKeyer(void){
|
||
|
lastPaddle = 0;
|
||
|
bool continue_loop = true;
|
||
|
unsigned tmpKeyControl = 0;
|
||
|
|
||
|
if( Iambic_Key ) {
|
||
|
while(continue_loop) {
|
||
|
switch (keyerState) {
|
||
|
case IDLE:
|
||
|
tmpKeyControl = update_PaddleLatch(0);
|
||
|
if ( tmpKeyControl == DAH_L || tmpKeyControl == DIT_L ||
|
||
|
tmpKeyControl == (DAH_L | DIT_L) || (keyerControl & 0x03)) {
|
||
|
update_PaddleLatch(1);
|
||
|
keyerState = CHK_DIT;
|
||
|
}else{
|
||
|
if (0 < cwTimeout && cwTimeout < millis()){
|
||
|
cwTimeout = 0;
|
||
|
stopTx();
|
||
|
}
|
||
|
continue_loop = false;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case CHK_DIT:
|
||
|
if (keyerControl & DIT_L) {
|
||
|
keyerControl |= DIT_PROC;
|
||
|
ktimer = cwSpeed;
|
||
|
keyerState = KEYED_PREP;
|
||
|
}else{
|
||
|
keyerState = CHK_DAH;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case CHK_DAH:
|
||
|
if (keyerControl & DAH_L) {
|
||
|
ktimer = cwSpeed*3;
|
||
|
keyerState = KEYED_PREP;
|
||
|
}else{
|
||
|
keyerState = IDLE;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case KEYED_PREP:
|
||
|
//modified KD8CEC
|
||
|
if (!inTx){
|
||
|
//DelayTime Option
|
||
|
active_delay(delayBeforeCWStartTime * 2);
|
||
|
|
||
|
keyDown = 0;
|
||
|
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
|
||
|
startTx(TX_CW);
|
||
|
}
|
||
|
ktimer += millis(); // set ktimer to interval end time
|
||
|
keyerControl &= ~(DIT_L + DAH_L); // clear both paddle latch bits
|
||
|
keyerState = KEYED; // next state
|
||
|
|
||
|
cwKeydown();
|
||
|
break;
|
||
|
|
||
|
case KEYED:
|
||
|
if (millis() > ktimer) { // are we at end of key down ?
|
||
|
cwKeyUp();
|
||
|
ktimer = millis() + cwSpeed; // inter-element time
|
||
|
keyerState = INTER_ELEMENT; // next state
|
||
|
}else if (keyerControl & IAMBICB) {
|
||
|
update_PaddleLatch(1); // early paddle latch in Iambic B mode
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case INTER_ELEMENT:
|
||
|
// Insert time between dits/dahs
|
||
|
update_PaddleLatch(1); // latch paddle state
|
||
|
if (millis() > ktimer) { // are we at end of inter-space ?
|
||
|
if (keyerControl & DIT_PROC) { // was it a dit or dah ?
|
||
|
keyerControl &= ~(DIT_L + DIT_PROC); // clear two bits
|
||
|
keyerState = CHK_DAH; // dit done, check for dah
|
||
|
}else{
|
||
|
keyerControl &= ~(DAH_L); // clear dah latch
|
||
|
keyerState = IDLE; // go idle
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
checkCAT();
|
||
|
} //end of while
|
||
|
}
|
||
|
else{
|
||
|
while(1){
|
||
|
char state = update_PaddleLatch(0);
|
||
|
// Serial.println((int)state);
|
||
|
if (state == DIT_L) {
|
||
|
// if we are here, it is only because the key is pressed
|
||
|
if (!inTx){
|
||
|
startTx(TX_CW);
|
||
|
|
||
|
//DelayTime Option
|
||
|
active_delay(delayBeforeCWStartTime * 2);
|
||
|
|
||
|
keyDown = 0;
|
||
|
cwTimeout = millis() + cwDelayTime * 10; //+ CW_TIMEOUT;
|
||
|
}
|
||
|
cwKeydown();
|
||
|
|
||
|
while ( update_PaddleLatch(0) == DIT_L )
|
||
|
active_delay(1);
|
||
|
|
||
|
cwKeyUp();
|
||
|
}
|
||
|
else{
|
||
|
if (0 < cwTimeout && cwTimeout < millis()){
|
||
|
cwTimeout = 0;
|
||
|
keyDown = 0;
|
||
|
stopTx();
|
||
|
}
|
||
|
//if (!cwTimeout) //removed by KD8CEC
|
||
|
// return;
|
||
|
// got back to the beginning of the loop, if no further activity happens on straight key
|
||
|
// we will time out, and return out of this routine
|
||
|
//delay(5);
|
||
|
//delay_background(5, 3); //removed by KD8CEC
|
||
|
//continue; //removed by KD8CEC
|
||
|
return; //Tx stop control by Main Loop
|
||
|
}
|
||
|
|
||
|
checkCAT();
|
||
|
} //end of while
|
||
|
} //end of elese
|
||
|
}
|
||
|
|
||
|
|